亚欧色一区w666天堂,色情一区二区三区免费看,少妇特黄A片一区二区三区,亚洲人成网站999久久久综合,国产av熟女一区二区三区

  • 發布文章
  • 消息中心
點贊
收藏
評論
分享
原創

tensor中0維、1維、2維、3維(高)

2024-11-04 09:32:44
4
0
# 0維Tensor:也就是一個標量(Scalar),它沒有維度,
# 1維Tensor:也稱作向量(Vector),它有一個維度
# 2維Tensor:也稱作矩陣(Matrix),它有兩個維度
# 3維Tensor:也叫高維Tensor(>=3), 它有3個維度可以想象為一個數據立方體

import torch

x = torch.tensor(1)
print(x.shape, x.size(), x.dim())

x = torch.tensor([1])
print(x.shape, x.size(), x.dim())

x = torch.tensor([1, 2, 3])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1, 2, 3]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1], [1], [1]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[[1]]])
print(x.shape, x.size(), x.dim())
x = torch.tensor([[[1, 2, -1], [3, 4, -1]], [[5, 6, -1], [7, 8, -1]]])
print(x.shape, x.size(), x.dim())

'''
torch.Size([]) torch.Size([]) 0
torch.Size([1]) torch.Size([1]) 1
torch.Size([3]) torch.Size([3]) 1
torch.Size([2, 3]) torch.Size([2, 3]) 2
torch.Size([1, 1]) torch.Size([1, 1]) 2
torch.Size([1, 3]) torch.Size([1, 3]) 2
torch.Size([3, 1]) torch.Size([3, 1]) 2
torch.Size([1, 1, 1]) torch.Size([1, 1, 1]) 3
torch.Size([2, 2, 3]) torch.Size([2, 2, 3]) 3
'''
0條評論
作者已關閉評論
Top123
32文章數
3粉絲數
Top123
32 文章 | 3 粉絲
Top123
32文章數
3粉絲數
Top123
32 文章 | 3 粉絲
原創

tensor中0維、1維、2維、3維(高)

2024-11-04 09:32:44
4
0
# 0維Tensor:也就是一個標量(Scalar),它沒有維度,
# 1維Tensor:也稱作向量(Vector),它有一個維度
# 2維Tensor:也稱作矩陣(Matrix),它有兩個維度
# 3維Tensor:也叫高維Tensor(>=3), 它有3個維度可以想象為一個數據立方體

import torch

x = torch.tensor(1)
print(x.shape, x.size(), x.dim())

x = torch.tensor([1])
print(x.shape, x.size(), x.dim())

x = torch.tensor([1, 2, 3])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1, 2, 3]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[1], [1], [1]])
print(x.shape, x.size(), x.dim())

x = torch.tensor([[[1]]])
print(x.shape, x.size(), x.dim())
x = torch.tensor([[[1, 2, -1], [3, 4, -1]], [[5, 6, -1], [7, 8, -1]]])
print(x.shape, x.size(), x.dim())

'''
torch.Size([]) torch.Size([]) 0
torch.Size([1]) torch.Size([1]) 1
torch.Size([3]) torch.Size([3]) 1
torch.Size([2, 3]) torch.Size([2, 3]) 2
torch.Size([1, 1]) torch.Size([1, 1]) 2
torch.Size([1, 3]) torch.Size([1, 3]) 2
torch.Size([3, 1]) torch.Size([3, 1]) 2
torch.Size([1, 1, 1]) torch.Size([1, 1, 1]) 3
torch.Size([2, 2, 3]) torch.Size([2, 2, 3]) 3
'''
文章來自個人專欄
文章 | 訂閱
0條評論
作者已關閉評論
作者已關閉評論
0
0