前言
本文旨在介紹如何利用 ClickHouse官網 Star Schema數據集對天翼云數據倉庫 ClickHouse進行性能測試,并提供數據導入及性能測試的參考方案。
準備工作
購買實例
請先購買天翼云數據倉庫 ClickHouse 實例。您可以選擇計算增強型或內存優化型。
準備測試機器
準備一臺能夠訪問天翼云數據倉庫 ClickHouse 服務的 Linux 機器,并在該機器上安裝 ClickHouse 客戶端工具。測試機器至少需要 1.5TB 的存儲空間,并確保能夠順利訪問天翼云數據倉庫 ClickHouse 服務。有關 ClickHouse 客戶端工具的安裝,請參考相應的安裝文檔。
在購買實例后,您需要在控制臺中調整以下參數:
| 參數名稱 | 具體文件 | 作用 | 建議值 |
|---|---|---|---|
| max_threads | users.xml | 單個查詢允許使用的線程數 | CPU 核數 |
| max_insert_threads | users.xml | 單次寫入允許使用的線程數 | CPU 核數 |
| max_memory_usage | users.xml | 單次查詢允許使用的最大內存 | 總內存數(10GB) |
| background_pool_size | users.xml | MergeTree 引擎后臺任務線程池大小 | CPU 核數 * 2 |
| max_thread_pool_size | config.xml | 全局線程池最大分配線程數量 | 20000 |
| max_open_files | config.xml | 允許進程打開的最大文件句柄數 | 1000000 |
| mark_cache_size | config.xml | mark 文件緩存大小 | 10737418240 |
具體參數的調整請參考相關配置文檔。注意:調整完成后,請重啟集群。
測試步驟
確認軟件版本
使用 ClickHouse 客戶端訪問天翼云數據倉庫 ClickHouse 服務,以查看軟件版本:
clickhouse client --host $HOST --port $PORT -q "select version()"
請確保軟件版本高于 22.8。
準備數據生成工具
git clone git@github.com:vadimtk/ssb-dbgen.git
cd ssb-dbgen
make
生成測試數據
使用 ssb-dbgen 工具生成測試數據。可以選擇兩種規模的數據,參數 -s 100 生成約 6 億行數據,-s 1000 生成約 60 億行數據。建議使用:
# 生成約60億行數據
./dbgen -s 1000 -T c # 生成客戶表數據
./dbgen -s 1000 -T l # 生成訂單行數據
./dbgen -s 1000 -T p # 生成產品表數據
./dbgen -s 1000 -T s # 生成供應商表數據
創建數據庫表
在天翼云數據倉庫 ClickHouse 控制臺上獲取服務入口信息,記錄訪問 IP 和服務端口為 HOST 和 PORT。使用 ClickHouse 客戶端工具連接天翼云數據倉庫 ClickHouse 服務,執行如下 SQL 創建所需的表:
CREATE TABLE customer
(
C_CUSTKEY UInt32,
C_NAME String,
C_ADDRESS String,
C_CITY LowCardinality(String),
C_NATION LowCardinality(String),
C_REGION LowCardinality(String),
C_PHONE String,
C_MKTSEGMENT LowCardinality(String)
)
ENGINE = MergeTree ORDER BY (C_CUSTKEY);
CREATE TABLE lineorder
(
LO_ORDERKEY UInt32,
LO_LINENUMBER UInt8,
LO_CUSTKEY UInt32,
LO_PARTKEY UInt32,
LO_SUPPKEY UInt32,
LO_ORDERDATE Date,
LO_ORDERPRIORITY LowCardinality(String),
LO_SHIPPRIORITY UInt8,
LO_QUANTITY UInt8,
LO_EXTENDEDPRICE UInt32,
LO_ORDTOTALPRICE UInt32,
LO_DISCOUNT UInt8,
LO_REVENUE UInt32,
LO_SUPPLYCOST UInt32,
LO_TAX UInt8,
LO_COMMITDATE Date,
LO_SHIPMODE LowCardinality(String)
)
ENGINE = MergeTree PARTITION BY toYear(LO_ORDERDATE) ORDER BY (LO_ORDERDATE, LO_ORDERKEY);
CREATE TABLE part
(
P_PARTKEY UInt32,
P_NAME String,
P_MFGR LowCardinality(String),
P_CATEGORY LowCardinality(String),
P_BRAND LowCardinality(String),
P_COLOR LowCardinality(String),
P_TYPE LowCardinality(String),
P_SIZE UInt8,
P_CONTAINER LowCardinality(String)
)
ENGINE = MergeTree ORDER BY P_PARTKEY;
CREATE TABLE supplier
(
S_SUPPKEY UInt32,
S_NAME String,
S_ADDRESS String,
S_CITY LowCardinality(String),
S_NATION LowCardinality(String),
S_REGION LowCardinality(String),
S_PHONE String
)
ENGINE = MergeTree ORDER BY S_SUPPKEY;
導入測試數據
進行數據導入,首先導入基礎表數據:
clickhouse client --host $HOST --port $PORT --query "INSERT INTO customer FORMAT CSV" < customer.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO part FORMAT CSV" < part.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO supplier FORMAT CSV" < supplier.tbl
clickhouse client --host $HOST --port $PORT --query "INSERT INTO lineorder FORMAT CSV" < lineorder.tbl
然后根據基礎表數據生成寬表數據。注意您已調整了 max_memory_usage 和 max_insert_threads 參數。
CREATE TABLE lineorder_flat
ENGINE = MergeTree ORDER BY (LO_ORDERDATE, LO_ORDERKEY)
AS SELECT
l.LO_ORDERKEY AS LO_ORDERKEY,
l.LO_LINENUMBER AS LO_LINENUMBER,
l.LO_CUSTKEY AS LO_CUSTKEY,
l.LO_PARTKEY AS LO_PARTKEY,
l.LO_SUPPKEY AS LO_SUPPKEY,
l.LO_ORDERDATE AS LO_ORDERDATE,
l.LO_ORDERPRIORITY AS LO_ORDERPRIORITY,
l.LO_SHIPPRIORITY AS LO_SHIPPRIORITY,
l.LO_QUANTITY AS LO_QUANTITY,
l.LO_EXTENDEDPRICE AS LO_EXTENDEDPRICE,
l.LO_ORDTOTALPRICE AS LO_ORDTOTALPRICE,
l.LO_DISCOUNT AS LO_DISCOUNT,
l.LO_REVENUE AS LO_REVENUE,
l.LO_SUPPLYCOST AS LO_SUPPLYCOST,
l.LO_TAX AS LO_TAX,
l.LO_COMMITDATE AS LO_COMMITDATE,
l.LO_SHIPMODE AS LO_SHIPMODE,
c.C_NAME AS C_NAME,
c.C_ADDRESS AS C_ADDRESS,
c.C_CITY AS C_CITY,
c.C_NATION AS C_NATION,
c.C_REGION AS C_REGION,
c.C_PHONE AS C_PHONE,
c.C_MKTSEGMENT AS C_MKTSEGMENT,
s.S_NAME AS S_NAME,
s.S_ADDRESS AS S_ADDRESS,
s.S_CITY AS S_CITY,
s.S_NATION AS S_NATION,
s.S_REGION AS S_REGION,
s.S_PHONE AS S_PHONE,
p.P_NAME AS P_NAME,
p.P_MFGR AS P_MFGR,
p.P_CATEGORY AS P_CATEGORY,
p.P_BRAND AS P_BRAND,
p.P_COLOR AS P_COLOR,
p.P_TYPE AS P_TYPE,
p.P_SIZE AS P_SIZE,
p.P_CONTAINER AS P_CONTAINER
FROM lineorder AS l
INNER JOIN customer AS c ON c.C_CUSTKEY = l.LO_CUSTKEY
INNER JOIN supplier AS s ON s.S_SUPPKEY = l.LO_SUPPKEY
INNER JOIN part AS p ON p.P_PARTKEY = l.LO_PARTKEY;
優化查詢(可選)
天翼云數據倉庫 ClickHouse 提供預計算能力以加快執行速度。可以通過 PROJECTION 來加速查詢。執行以下 SQL 以添加不同的投影:
ALTER TABLE lineorder_flat ADD PROJECTION p1 (
SELECT
toYear(LO_ORDERDATE) AS year,
sum(LO_REVENUE)
GROUP BY
year,
P_BRAND,
P_CATEGORY,
S_REGION
);
-- 繼續添加其他投影...
執行完投影后,需要對現有數據進行處理,使投影在存量數據上生效:
ALTER TABLE lineorder_flat MATERIALIZE PROJECTION p1;
-- 繼續對其他投影進行物化...
注意: 該步驟是可選的,使用優化后,性能提升非常明顯。
執行測試 SQL 并統計執行時間
在測試階段,您可以執行以下查詢,并記錄執行時間:
- Q1.1
SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue
FROM lineorder_flat
WHERE toYear(LO_ORDERDATE) = 1993 AND LO_DISCOUNT BETWEEN 1 AND 3 AND LO_QUANTITY < 25;
- Q2.1
SELECT
sum(LO_REVENUE),
toYear(LO_ORDERDATE) AS year,
P_BRAND
FROM lineorder_flat
WHERE P_CATEGORY = 'MFGR#12' AND S_REGION = 'AMERICA'
GROUP BY
year,
P_BRAND
ORDER BY
year,
P_BRAND;
- Q3.1
SELECT
C_NATION,
S_NATION,
toYear(LO_ORDERDATE) AS year,
sum(LO_REVENUE) AS revenue
FROM lineorder_flat
WHERE C_REGION = 'ASIA' AND S_REGION = 'ASIA' AND year >= 1992 AND year <= 1997
GROUP BY
C_NATION,
S_NATION,
year
ORDER BY
year ASC,
revenue DESC;
總結
性能測試是天翼云數據倉庫 ClickHouse 業務接入前的重要步驟,對于性能和資源的評估具有重要意義。進行性能對比測試時,請注意以下幾點:
- 調整天翼云數據倉庫 ClickHouse 的關鍵參數,以最大限度發揮性能。
- 確保資源的一致性,例如,天翼云數據倉庫 ClickHouse 在某些情況下僅使用一半的節點進行計算,可能導致性能數據不占優勢。
通過以上步驟和注意事項,您可以有效地進行性能測試并獲得優化的結果。